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THEORETICAL INVESTIGATION OF LIQUID WATER
INJECTION INTO THE SHOCK LAYER OF A REENTRY VEHICLE

By T. C. Dellinger and H. A. Hassan
North Carolina State University, Raleigh, N. C.

SUMMARY

A method is presented for the calculation of the flow field resulting
from the injection of a liquid spray into a supersonic air stream past a
blunt body. The model employed assumes a two-phase flow with frozen chemis-
try and with simultaneous acceleration and evaporation of the spray. The
method gives, among other things, the spray penetration, F o r the range of
parameters investigated, the penetration increases with an increase in injec-
tion speed, angle, and drop size but is almost independent of the mass flow
rate. Because the spray acts to slow and to deflect the air stream, there
is initially a rise in the air temperature; the magnitude of this rise is
such that finite chemical reaction rates should be taken into consideration
for more accurate flow field calculations.

INTRODUCTION

The problem of fluid injection into a supersonic stream has been under
investigation because of its importance in the areas of communications (e.g.
refs. 1,2), aerodynamic control systems (e.g. refs. 3,4) and fuel injection
for supersonic combustion (e.g. refs. 5,6). In this work, the injection of
liquid water into the supersonic portion of the flow field surrounding a
blunt body at typical reentry conditions, with the objective of determining
the resulting two-phase flow field and the penetration, is considered. The
results of this study have immediate application in the study of material
injection as a means of alleviating communications blackout (ref. 7).

Accurate prediction of the fluid penetration is very difficult. The
major difficulties being the determination of the shape of the induced shock
wave resulting from the obstruction of the primary flow by the emerging jet,
and the manner in which a liquid jet breaks up and disperses in the primary
flow (ref. 8). For the problem under consideration, it is assumed that the
liquid is injected as a uniform spray of spherical drops, and the drop sizes
are such that further breakup due to aerodynamic forces is negligible. It
is also assumed that the spray is completely porous to the air stream and no
shock wave is formed as a result of injection. The first assumption is jus-
tified from the consideration that, for the typical reentry conditions con-
sidered here, the jet breaks up almost immediately. The second assumption
is partially justified if one limits the investigation to dilute sprays. In

rather than alter the results obtained using the shock-free model. This is
explained as follows: if a shock forms upstream of the spray, the air stream
direction near the body would not be changed greatly from its direction
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without a shock; thus, the effects of the relative velocity direction on
penetration should not differ very much for the two cases. Also, in the
presence of a shock the air velocity seen by the spray is reduced while the
air temperature is increased. The reduced air velocity should result in a
greater spray penetration in a given distance since the spray is turned in
the gas direction at a slower rate; however, the higher air temperature has
a counter effect on the penetration since the evaporation is faster and the
resulting smaller drops are more quickly entrained by the air stream.

In this work, the analysis treats the air and spray as a two-phase flow
problem with simultaneous evaporation and acceleration of the spray,and
frozen chemistry. The governing equations are derived in Appendix A using
the statistical approach of ref. 9., Because of the type and number of these
equations, a numerical solution needs to be employed. The method of integral
relations, which was introduced by Dorodnitsyn(ref 10) is used and the "one-
strip" approximation to this method was chosen because past experience, (ref.
11), has shown that it predicts overall flow properties (detachment distance,
surface pressure distribution, etc.) fairly well and because it is not as
involved as more accurate methods, (ref. 12). It turned out during the course
of this investigation that the one-strip approximation was not suited, in
its original form, to calculate flow fields, and some modifications were in-
troduced. The numerical calculations were carried out for the NASA RAM C
vehicle, which is a slender cone with a spherical nose (fig. 1) for a vehicle
speed of 25,920 ft/sec at an altitude of 233,000 ft and zero angle of attack,

ANALYS1IS
1. Coordinate System
An orthogonal curvilinear body-oriented coordinate system which is
easily adaptable to either two-dimensional or axisymmetric bodies is chosen
here. The coordinate system together with pertinent definitions is illus-

trated in figure 2.

Utilizing the vector operatioms

1 00 2 1 ¢ 4 1 00 4
TR SsTE TR % e (1)
s n Z
-~ 1 ) d o
Vi T E;E;E; [55 (qshnhz) * on (qnhzhs) * dz (qzhshn)] (2)
- = 1 .0 o
vxa = pghs (L [5n (hep) - 57 (hpay)]
s naz
) /.'\ l‘a fv. ~ a { -~ \1 N ra /1 \ a I4 AN N
ti [ hyag) - 55 Ba,0] F i) g (hq ) - 5 (ha )] (3)

and noting that for the orthogonal system under consideration
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- o _ 1 +0 - -
9, =0, 5 =0, hy=l+g, h =1, h =1 (&)

the dimensionless governing differential equations (38, 39, k1, k2, 43, hhaA)

take the following forms when V_=v i +v i,V =uil +ui:
p s's nn’ g s’s n'n
Spray Continuity
B.B.Be rp X
S v )+ S [+ mv ]+ 3 1526<1+§)Tg—=o (5)
p
Spray Momentum
avs ) n
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BB Y
5756 n, "g'D T -
-8 2 (1 + ﬁ) T (us_BEVs)rvg-B2Vp| =0 (6)
Bs P
avn n avn
B VSE—-V E[(1+§)V]+(1+—)(V y*’vn'&—)
P=Pg P.Ch >
-2 22 (1) E2 (e )V ,-87V | =0 (7)
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Droplet Radius
or d BB
R AR R Tt P =0 ©)
Gas Continuity
rp X
2 (roug) +§; [(1+3) wogu] - 38,Bpfc (1 +3) —;g— =0 (9)
P




Gas Momentum

du B
uSB_S§+p—ggg+un§-{[(1 +%) ug ]

+ 38588 (1 + g) N (ug = Bovg) [—g— [V, - BV |
+ BBy =1 =0 (10)
p
du B du du
usBs_n' usé%[(l +%) us] + (1 +%) [Bg%+us517§+un3f13]
p p C
n P gD = -
+ 385PBg (1 + 1) o (w, - Bv,) [=5— |V, - 8V |
+ BBy =1 = 0 (11)
p
Gas Energy
2, 2 2 2
2 frou (h + o2 0]+ 2 (14D sy (b Ll
Ts LTPgYs Vg 2 on R/ Pg%n g 2
a, Pp Pl - - -~ N
+5%%%%(1+§%§{—g—wg-%%|0% BV, )Y,
X Vi +Vr21
- B1PPg ;; (hp t— )] =0 (12)

2. Divergence Form of the Governing Equations

Application of the integral method requires that the governing equations
be put into the divergence form,

oL oG,

1 —_

e R VI (13)

As seen above, some of the equations, namely (5), (9) and (12), are already
in this form. There are, however, many ways in which these equations and
the remaining equations can be put in divergence form, and the solution will
depend on the particular form chosen when a finite number of strips is

L
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employed, (ref. 13). The particular expressions chosen for the I G, and K,
functions are given below. t t

Spray Continuity

2
B.BB rp X
i=1,1 =ryv, 6 = (1 +-§) To v, Ky =3 % (1 +%) z (14)
2 T
P
Gas Continuity
n 2 n rpr
1=2, Iy =wogu, G = (L+g) mpu, Ky = -388.8.8.° (1 +5) —& (15)
"p
Droplet Radius
B8R rp X
. _ _ _) 1756 n, "p
=3 Iy PpVsTp’ G5 PpVntpr K3 y Py (s R p e
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__psn 5 6 P 8D = o
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p
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2
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Gas Momentum

i=6, Ig = r(pgus2 + Bhpg)’ Gg = (1 + %) ro u u

g s n
rpgusun . 0 rpp
Kg = R - Bhpg sin © + 3355556 (1 + ﬁ) ji;
p C Xv
D -
C =5 (ug - Bv )T, - BT | - BiBoB r—: ] (19)
2
i=7, I-(- = rpgusun’ G7 = (1 + %)r(pgun + Bhpg)
2
rpgus T n n rpp
K7 - - Bhpg [i + (1 + E) cos ©] + 5656586 (1 + E) <
ngD N -~ Xvn
Gas Energy
o+ . o+
i=28, Ig = rpgus(hg + ———E———) , Gg = (L + i) LA (hg + ———Er——-)
ro p C
_ n P, gD == S
K8 h BB2636566 (1 + ﬁ) 72; { 8 ]Vg - BEVpl [vs(us - 62Vs)
2
X VS + Vn
+ Vn(un - B2vn)] - B18286 ;; (hp + 2 )} (21)

3. Integral Form of the Equations

In order to utilize the method of integral relations, a choice must be
made for the number of strips to be used, The simplest choice is one strip
with the Ii terms being approximated by functions linear in n. Although

this approximation might seem rather crude, actual calculations using this
approach are sufficiently accurate when only information along the strip
boundaries is desired, (ref. 11); however, results predicted using this
pProcedure are somewhat approximate, at intermediate points (ref. 13). Be-
cause the total number of equations is more than doubled when injection is
considered, the actual number of equations required for the calculations can
become quite large when multi-strip schemes are employed. Therefore, a

6
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modified one-strip method which allows for more accurate flow field calcula-
tions is employed,

A schematic of the flow field to be analyzed here is shown in figure 3.
The interface e¢ determines the penetration of the spray. The interface repre-
sents a discontinuity in the spray density because lim L Py = 0 and

n—>¢

lim pp # 0; however, the interface is assumed completely porous to the
n—>¢"
gas flow., Between the interface and the body (0 < n < ¢), the spray equa-
tions (14), (16), (17), (18) and the gas equations (15), (19 (20) and (21)
need to be considered whlle in the region between the shock Wave and inter-
face (¢ < n < &) only the gas equations (15), (19) and (20) need to be con-
sidered. Us1ng the given flow field model and integrating equations (1k),
(16), (17), (18), and (21) between O and ¢ and equations (15), (19) and (20)
between 0 and B and utilizing Leibnitz's rule, one finds

€ €
d de .
) f Ldn =1, =+G -G - é R,dn, i = 1,3,4,5,8 (22)
0
B s
4 [ 1.,dn = s G, -G, - f Kdn, j=2,6,7 (23)
ds o 4 36 ds jo jd o

where the subscripts O, ¢ and d represent the body, interface and shock,
respectively. Equations (22) and (23%) contain the undefined quantities
de/ds and dd/ds, respectively. From the geometry of the shock wave
one has, (ref. 12)

ds/ds = (1 + 8/R) cot (v +©). (2L)

Since the spray does not penetrate the interface, it must be a streamline
for the spray; hence,

de/ds = Vne/vse = I5e/1he . (25)

Since Kj’ j = 2,6,7 is discontinuous, equation (23) requires further

consideration. As was pointed out above, Leibnitz's rule is used to reduce
®
the integrals [ (BIj/Ss)dn, j = 2,6,7. This step requires that Ij and BIj/Bs
0
be continuous within O < n < ®; hence, continuity of all gas properties at
the interface is assumed. From a consideration of the general divergence
form of the governing equation, one can reason that the discontinuity in K,

should be reflected in the (3G,/dn) terms since the (Bli/as)c terms are
J < ~

J
assumed continuous as required by Leibnitz's rule. For this reason, when
representing Ii as Ii(s,n), the normal derivatives of the gas properties at

€ are assumed to be discontinuous. It should be noted, however, that, within

7
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the framework of the method of integral relations, one needs not invoke such
an assumption. This follows because the governing equations are equations
(22) and (23) rather than the divergence form equations, and equation (23)
is valid even when the integrand (BGj/Bn) is discontinuous at a finite

number of points between O < n < 8. The assumption of discontinuous deriva-
tives for the gas properties at ¢ is employed here because it is believed to
be more representative of the actual situation.

4, Flux Approximations

As can be seen from the divergence form of the governing equations, the
quantities I, (i =1,3,4,5,8) and Ij.(j = 2,6,7) are products of the spray
and gas properties, respectively. These products, which we will hereafter
refer to as the fluxes, appear as integrands in the integral relations (22)
and (23). 1In order to evaluate these integrals, the n-variation of the
fluxes must be specified. In the one-strip approximation, it is usually
assumed that the fluxes vary linearly between the strip boundaries (ref. 12).
In this work, such an assumption is relaxed and the various fluxes are
approximated as follows.

For the range 0 < n < ¢, we assume that

I, =L+ (Iie—Iio)fi(w), w =n/e

fi(O) =0, fi(l) =1, 1i-= 1,5,&-,5,8 (26)

where f,(w) is some polynomial, not necessarily linear. For 0 < n < 5, we
i S0
seek approximations of the form
I, =1, +(I,.-I, )f (z zZ =n/d
£;(0) =0, £,(1)=1, j=267 . (27)

However, the normal derivatives of the gas properties at ¢ are postulated as
being discontinuous so that the expressions (27) are replaced,

for % <z<l1, by
I. =1, + (I,.-I, f. (z
J jo ( id JO) 5] (2)
6fj(l) =1, j=2,6,7 (28)

and for 0 <z < e/d, by
I. =1, + (Ijﬁ-ljo) €fj (z)
— = § = . 2
The condition on f(e/®) given in (29) follows from the fact that

8
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Ij (j =2,6,7) is assumed continuous at ¢. Here, also, efj(z) and ij@)

are polynomials, not necessarily linear.

Using the preceding approximations (26), (28) and (29), the integrals
o f the fluxes in equations (22) and (23%) can be evaluated, giving

1
d _ de
ds { fljp * (Iie_Iio)qi]} = lied Gio = Cie ~ € g K;dw
1
q; = [ f;(w)dw, i =1,3,L,5,8 (30)
0
and
d ds 1
= | 6[13.0 + (I 36 )q 1} = IJ6 i Gjo - GJ.6 - 5(]} Kjdz
1 e/d 1
a, = [ £;(z)dz = [ £, (z dz + [ f.(z)dz, § =2,6,7 (31)
o 0 /s 03
For equation (%0) we define the general dependent variable, £, given
by *
g = el * (TemTileyl, 1= 1,5,4,5,8 (32)

so that equation (30) becomes

dt. 1
d .
HEE = Lie E% * G0~ Cic ™ € é Kydw, 1= 1,3,4,5,8 . (33)

For equations j = 2,6 of equation (31), we define the dependent variable

éj = IjO + (IJS-IjO)qj, j = 2)6 (5)4-)
where
dg, 1
j 1 dd .
T =5 yedy) a5 * G50 ~ Ggp) - Kydz 1 =26 (35)

Equation j = 7 is a special case of equations (34) and (35) above in which

170 = 0 because u = 0. It will be assumed that q7 = constant and for j = 7
we define

1 36

E, = Log (36)



and we obtain

ds ~ Bq [(1- ) E'7 dS G70 ) G75] T 4q, [ K7dz ) (57)
7 70
The assumption that q7 = constant is discussed in the section on boundary
conditions.

The above expressions (33), (35) and (37) are a set of ordinary dif-
ferential equations which may be integrated numerically for given initial
and boundary conditions, Such conditions are discussed in the following
sections,

5. Modifications of the One-Strip Approximation

In the preceding sections, the one-strip approximation was applied to
the governing gas and spray equations. As a result, an approximate set of
governing differential equations was obtained. The dependent variables ¢
are given in terms of the flux values on the strip boundaries and the inte-
grals of the assumed distributions between the strip boundaries. When one
strip is used, the usual procedure is to assume that the distributions are
linear and to impose boundary conditions on the properties along one of the
two boundaries, The ordinary differential equation solutions can then be
used to determine the unknown properties along the remaining boundary. Such
boundary properties are generally accurate, but the flow field values are
usually not accurate. In theory, this problem can be overcome by increasing
the number of strips. However, if the one-strip formulation is to be used
and more accurate flow-field properties are desired, an alternative approach
to the usual one-strip integral method must be used.

One possible procedure is not to assume linear distributions and to
obtain additional conditions which will allow one to adjust the distributions
£ (or q) as the calculation proceeds. Additional conditions at the bound-
aries can be obtained by utilizing the exact governing differential equa-
tions; that is, by taking the limit of equation (13) as n approaches 0 or e.
Conditions generated by this procedure result in total differential equations
which, when combined with equations (30) and (31), give sufficient informa-
tion to change f or q.

BOUNDARY CONDITIONS
1. Gas
Since the gas dependent variables are given by the equations [(32),

=87, [(34), j =2,6] and [(36), j = 7], values for the fluxes L (3 = 2,6,
7,8) are desired along the shock, interface and body.

10



a, Shock

The desired shock conditions are those corresponding to the passage of
a thermally perfect, calorically imperfect gas of constant chemical composi-
tion through a locally straight oblique shock wave. For given free stream
conditions and either one property behind the shock or the shock wave angle,
v, the remaining properties behind the shock can be determined from the
Rankine-Hugoniot equations. As shown in the derivative of equation (57),
using u = 0 and assuming q7 constant leads to a differential equation for
176' This equation, when coupled with the Rankine-Hugoniot equations and
equation (24), leads to two non-linear algebraic equations for v and Tg&'
These two equations can be solved simultaneously by an iterative procedure.
Once values of v and T 5 are known, the remaining shock properties can be
calculated. &

b, Interface

Continuity of all gas properties is required at the interface, but the
normal derivatives of these properties are assumed discontinuous. In addi-

tion, a condition on 18€ is obtained since 18€ = IEeH’ where H is the total

enthalpy of the gas and is constant for n > .

c. Body

The boundary condition U = 0 gives 1 a result which has been used

70’
in deriving equation (39). 1In order to obtain values for the gas properties
Ijo (j =2,6,8), we consider the exact equation for the properties, i.e.,

(BIj/Bs) + (BGj/Bn) + Kj = 0., Taking the limit as n —> 0 and utilizing

equations [(26), j = 8] and [(29), j = 2,6] gives
dr, oG,
di + lim ('gn—l) + KjO = O} J = 2)6)8 ° (58)
n—>0
n Yn
However, Gj = (1 + R I ﬁ; , so that
aGJ. I, du_ (
lim (=) = = (=) j=2,6,8. 39)
n—>0 o Uso on - 0 ’ T
4> 0
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or
1 (9

(<) . (Lo)
o Izo O™ g

au]f).
(=2)

Thus, we obtain the following condition which must be satisfied by the gas
properties at the body:

a1, I 61

.- j =2,6,8 . L1
ds jo " u 20 (Sﬁ_ J 25 (41)

Values for (BIY/BH)O = 57(8f7/8n)0 are dependent upon the polynomial approxi-
mation chosen for £

7

d. Polynomial Approximations

Simultaneous solution of the differential equatiomns (35), (5 and (41)
yields values for IJo (3 =2,6,8), 1 (J 2,6,7) and §J (j = 2,6 From

these one can calculate the values for 45 and g since

i~ Tjo .
a5 = Tl——:—fl— , 1=2,6 . (L2)
j& = Tio
The question arises as how to select fg: f6 and f7 so as to satisfy equation
(42) for 455 dg and the assumed value of q7. Since the solution of the

general problem is started at a point where the distribution of the gas
properties in the shock layer is assumed known, the distributions f2, f6

and f7 and the corresponding integrals 455 dg and q7 are completely de-

termined initially. A close approximation to the initial data (ref. 1l4) was
obtained by assuming the following polynomial approximations:

fj(z) = z[alj(zh_l) + agj(ZB_l) + aBj(Zg_l) + auj(z-l) + 13, j = 2,6“L |
3

and

£ (z) = 22 (-—— = zB[a

2 )
(z-1) + a, (27-1) + a__(z7-1)
26 initial 1 o1

Ly

+ ah7(zu_1) + a57(25-1) + 17 . (Lb)

The coefficients ai, are known constants, and the expression for f7 results

from taking u_ = zJu z = n/d.
n n

12



Downstream of the initial line, the distributions are as follows:
Due to the postulated discontinuity in the slopes of the gas properties
at the interface, we take

fj(z) 8fj(z) , €/8<z<1

j= 2:6:7 (45)
fj(z) = efj(z) , 0<z<¢/8
where 6fj(e/6) = €fj(e/B). For the region ¢/ < z < 1, the form of the
distributions 6fj (j =2,6,7) is taken to be the form used for the initial
line distributions, equations (L3) and (k). For the region 0 < z < ¢/5, we
assume that the distributions are linear in z, so that

fi(2) = gE,(e/B)[2/(e/8)] 5 = 2,6,7 . (46)
1
Recalling that aj is defined as q; = / fj(z)dz, one finds
0

e/® 1 1
q = é (fi(2)az + [ f.(2)dz = (e/28) oE.(e/B) + [

z)dz .
e/d e/d

ij(

(W7
Thus, equation (47 ) represents the relation which the coefficients aij must
satisfy so that the resulting qj's coincide with values obtained from equa-
tion (42) and q7, which is assumed constant at its initial value. Since

there is no unique way of selecting these coefficients, it was assumed that
for each j, (j = 2,6,7), all but one of the coefficients a, . remained

constant. The variable coefficient was determined from equation (47) by
utilizing equation (42) and the known value of q7.

Because the distributions ef2’ ef6 and ef7 were taken as linear func-
tions a similar variation was assumed for f8’ i.e.,
f8(w) =w =12/(¢/d) . (48)

Values for 180 are calculated from equation (41) and the flux values at the-
interface are given by ISe = I2€ H. Introducing the linear approximation

of equation (L48) means that the gas energy £ 1 u x 1is completely determined
in the region 0 < n < ¢, since

Ig = Igy *+ (Ig, - Ig,) fg (W) .

As is seen from the above, 18 is calculated without using equation (33) for
j = 8. This suggests that one can choose f8(w) as a higher degree polynomial

and utilize equation (33) to change the distribution. This procedure was

13



employed first but was later abandoned because it resulted in numerical
instabilities.

The above gas model is a so-called "hybrid" because both equations (33)
and (41) are employed in calculating the flow properties.

2. Spray

The spray dependent variables are governed by equations [(32), i = 1,3,
4,5], and values for the fluxes Ii (i = 1,3,4,5) are desired along the body
and the interface.

The boundary conditions depend upon the manner in which the spray is
injected. 1In this work, it was desired to investigate the case of discrete
injection; that is, injection over a finite distance along the body followed
by a region in which no injection occurs. The following injection model was
used:

First, a uniform injection region occurs in which the spray is injected
at assigned constant properties which are independent of body location. This
region is followed by a narrow transition region in which the normal component
of the velocity is decreased to zero while keeping the magnitude of the
velocity and the other injection properties constant. A value of zero for
the normal component of the spray velocity at the body characterizes the con-
dition of no injection.

In the preceding model, the meaning of the last region is obvious; how-
ever, the other two regions deserve comment. In the uniform injection region,
the choice of constant properties was made for reasons of convenience only,
and the method presented in the following sections can be applied to any
other choice of injection parameters. The transition region serves the pur-
pose of turning the injected spray during the final stages of injection so
that the spray flows parallel to the body when injection ceases. The reasons
for including a transition injection region are as follows: As is shown in
figure L4, it is suspected that when an injection region is immediately fol-
lowed by a region of no injection, the spray separates from the wall but
reattaches a short distance downstream. After reattachment, the spray at
the body is characterized by the condition that the normal component of the

velocity is zero; i.e., Voo © 0. Because the gas and spray equations de-

veloped in this work do not account for any viscous effects, an injection
model was chosen that included a region in which the spray injection angle
could be turned in a continuous manner from its uniform injection wvalue to
a value parallel to the body some distance downstream.

Boundary conditions on the spray properties are given below for the
uniform injection {s < s < sl); transition (sl < s < s,); and no injection
o - - =72

(s > s_) regions.

5)
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a, Uniform Injection Region

For this region, the flux values at the body are assumed given, and the

spray properties (pp, rp, Vp) are assumed independent of body location.

Since the properties at injection are used as normalizing factors, the in-
jection process is characterized by the dimensionless variables

o =v =r =1, (49)

po no po

The angle of injection ¢ with respect to the body is also constant and is
defined by

v

VEE = tan ¢ (%0)

so

so that
V., = Cot ¢ = constant . (51)

From the above it follows that the flux variations along the body for the

spray are given by

dIio Iio

o -7 sine, i=1,3L5 (52)
o

where Iio/ro = constant and sin © = dro/ds = constant, the latter condition

results from the fact that the body radius of curvature is infinite through-
out the region s > S, for the RAM C vehicle considered in this work.

The boundary conditions, equations (52), when combined with the limiting
form of the governing equations lead to some conditions that must be satis-
fied by the distribution functions f Thus, the limit as n —> 0 of equa-

tion (13) yields v
dI, oG,
ot lm () +K =0, i=1,3L45. (53)
n—>0

Using G, = IiI5/Ih and equations (26), (32) and (52) in the above equation,

the following result is obtained:

! I K K, .
i io Lo (—E )(150 40 io sin O) (5h)

- 0 o lio %o
e ~ Tio

i=1,3L45.
The above condition on fi(w) represents a third condition to be used with

the two conditions of equation (26); i.e., fi(O) = 0 and fi(l) = 1. These
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three conditions make it possible to choose second order
functions fi(w), i =1,34,5 as follows:

When f! < 1, we take
io =

2
fi(w) =aw + (l-ai) W
where
6qi
a; =2/ (g=- 1)
io

and whenever f{o > 1, we take

1 _\/2
fi(w)—E[-bi+ bi+u(1+bi)w]
where
1 2
b, =5 [-B+ VB - Lhac 1, b, >0
£!
u_ql_°-12
i 2
A :1J B: f' K C_ 5
3 10 _ ¢ R

Expression (57) has the property that q, —> 2/3 as £l

b. Transition Region

polynomials for the

(55)

(%6)

(57)

(58)

—> 00.

This region is intended as a region of transition between the uniform
injection region where Voo = 1 and the no-injection region characterized by

Voo = 0. 1In this region it is assumed that
ol =r =1, V = cons tant
pPo po po
and
. 8-8, \2 58y \5
Voo = Lm0 ) e g
271 271

where Voo satisfies the following conditions:
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I
o

oV = L dvno/ds

(61)

I
@]

v =0

ot no dvno/dS

»

Since the injection is assumed to occur at the constant velocity of the uni-
form injection region, the tangential injection velocity is given by

v2 = V2 - V2 . (62)

so po no

The flux variations along the body are then given by

d
dIlO = —Eég =r sto + v sin ©
ds =~ “ds = "o ds s0
dIMO . dvSo 'y dIlO ()
ds ~ "10 ds so ds
dI50 B dvno dIlO

ds I10 s Vo "ds

where el = - In the uniform injection region, equations (52)
so

and (53) were combined to obtain conditions on the flux distributions of the
spray, f.. Here, the set of equations (63) corresponds to the set (52),

which seems to indicate that a similar procedure for obtaining conditions on
the fi could be followed for this region as for the uniform injection region.

However, the i = 5 equation of the set (53) is satisfied identically when

Voo 0 so that the conditions obtained for the fi are singular at that

point.

Instead, we consider equation (13) as before, but take the limit as
n —> ¢, which leads to

dIie Ii€-Iio de aci
( ) £ *lim () FK =0, i=13L5 (64)
n—>¢

ds €

where the above result is obtained using I, = I, + (I, - I,
i io ie io

equation (32), the following expression for dIie/ds results:

) fi' Using

dI ¢ dT, £, dq
ie 1 d i io 1 /i :
& g s () (e ) - )
i

€ io s 7



£,
(— -1, ) dq 3 dI,
3 io i d i io
R & - 3 ) () g g
(66)
quie ES fée gh de fie ,
L= Ihe [(1; - 150) 7;; - (?; - Iho) I ji:] , 1 =1,3,k5.

Since the derivatives de¢/ds, dgi/ds and dIio/dS can be calculated from

equations (25), (33) and (63) respectively, equation (66) can be used to
calculate q; and provides the desired condition on fi in the transition

region. The distributions (55) and (57) are again used, but the coefficients
are now given by

: lL-6qi
ai = 6qi -2 and bi = 6—(—1—_3 . (67)

i

¢. No-injection Region

This region is characterized by Voo = 0 throughout. This condition

alone does not give enough information to determine the flow field completely.
Additional boundary conditions can be obtained by using the limiting form of
the equations at O and ¢. When these equations are used in conjunction with
equation (30), one can calculate the fluxes at both boundaries and the
changes in the distribution functions. However, based on the numerical re-
sults obtained by such a procedure, it was concluded that such a combination
of equations is not compatible,

To proceed further one has two choices: to assume enough values at
the boundaries so that the schemes used in the injection region can be em-
ployed, or to assume 9; = constant. Since properties at the body are part

of the desired information, the latter assumption is used. 1In this case,
one can use equations (53) and (64) or equations (53) and (30). The first
set of equations is more convenient and is employed.

In the no-injection region, equation (53) becomes

dIio I 815
+ ( ) *K _ =0,
ds IHO on 0 io

i=1,3,4. (68)

Due to the influence of the 15 distribution, it was felt that the assumption

= constant was highly restrictive. A procedure whereby such an assumption
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can be relaxed is obtained from the following consideration. Since the in-
jection in the preceding transition region turns the spray parallel to the
body, it is assumed that in the no-injection region the spray and gas rapidly
adjust to the condition

& %
lin (—2) = lim (g_ﬂ) (69)

iso OB >0 M

where the superscript bars denote dimensional variables. The dimensionless
form of (69) is

ov du

n

(=) == (<2) . (70)
BE_ 0 B2 SH_ 0

As an approximation, this condition is imposed at the very beginning of the
no-injection region. Thus, since

ov i I5€féo

(Bnn)o T (T1)

it follows that the expression

€ IlO du

v n
50 "B &, (72)

when combined with the conditions f5(0) =0 and £_(1) = 1 can be used to

5

determine the f5 distribution throughout the no-injection region. As before,
either equation (55) or (57) determines f5.
INITIAL CONDITIONS

The solution is started at the beginning of the injection region.
Referring to figure 2, this location corresponds to the values X = 18.532 cm,
8 = 27.292 cm and r, = 15.951 cm. Initial conditions for the gas (air) and

spray are required at this point.

l. Gas

The injection location given above is within the supersonic portion of
the flow field. The flow parameters along this initial line (normal to the
body ) are assumed to have the same values as those calculated at this loca-
tion without injection. The initial values were obtained from the results
of inviscid, streamtube method calculations performed at the NASA Langley
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Research Center for the RAM C vehicle (ref. 14). These calculations in-
cluded non-equilibrium chemistry along the streamlines. For the RAM C vehicle
flying at zero angle of attack at 233,000 ft and with free stream conditions
of T_=205°K, p_ = 5 042x10~> ATM, V= 25,920 ft/sec, the flow field re-

sults are tabulated in Table 1. The initial shock wave angle is v = 63.236°,
The normal component u of the gas velocity Vg was approximated by

u = zBung, and the values of u, were calculated from the given values of
V_ using the relation V2 = u2 + u2.
g g s n
2. Spray

At the initial line ¢ = O, and to start the calculation it was assumed
de

that at s = s, = tan ¢.
o’ ds

RESULTS AND DISCUSSION

A fourth-order Runge-Kutta scheme was used in integrating the governing
equations and the computations were carried out on an IBM SYSTEM 560/MOD 75
electronic computer. The integration step-size at any stage of the calcula-

tion was automatically selected to satisfy a pre-determined accuracy criter-
ion.

A parametric study was carried out to determine the effects of the in-
jection velocity, mass flow rate and drop size, on the flow field. The
independent parameters obtained from the governing equations are the dimen-
sionless constants Bl - 57 (see Appendix A). Additional parameters are the

injected mass flow rate and the injection angle ¢.
The mass flow rate over the injection distance S, - S is given by

S

- 2
. 2
= d
mp 25 pg Vg DN 62 65 £ roppovno s (75)

o

where the superscript bar denotes a dimensional quantity. The injection
length Sy - 8, includes the uniform injection region s, <s < 81 and the
transition injection region s;<s < Sy A normalized mass flow rate is

. T - 2
defined as M =m /m . Here m = Vv x D-/4 is the free stream gas
o/ ;Mg = Pee Ve ™ D 8

flow rate through the reference area xn DE/M, where D

N is the body nose

diameter. Combining the expressions for mp and mg’ one obtains
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5o

M = BBQBB ] rop_ v ds. (76)
s

o po no
)

Using equations (L49), (59) and (60) for the variation of the injection
properties pp0 and Voo the above integral can be evaluated. With good

approximation, this result can be expressed as

(s,=8,) 51-8,

M~ 88,B5(sq-s )1 + 5(3—21:%7][%(%) + (—5—) sin 0] . (77)

In the computation, we have used S,=81 = (sl-so)/E so that by defining the

s
1
injection length A = s,-s_, one obtains for (77)
o~ 20 A N
M BB [r (s,) + 3 sin €] . (78)

Hence, the injected mass flow rate is characterized by the injection length
parameter A and the product 6265.

The influence of some of the dimensionless parameters was not investi-
gated in this study; thus, Bl, Bh’ 65 and 67 were chosen as Bl = .6725-10'h,

B, = .9&65-10_5, 65 = .2058-10—3, 67 = 1.137. 1In addition, the results were

obtained using the constant injection length A = .03. The remaining parameters
62, 65’ 66 and ¢ were determined from the values chosen for the injection

speed, angle, mass flow rate and drop size., The calculations were carried out
for the following parameters: (speed) Vp = 350,700 cm/sec; (initial angle)

tan ¢ = 1, 3; (mass flow rate) BB, = 1/2, 1, 3/2; (drop size) r_ = 75, 100
J 2 2 3 2 J p J 2

125 p. The results shown in figures 8-12 are for BBz = 1, ¥ = 3% cm/sec,
= ) P
rp = 100K and tan ¢ = 3,

Figure 5 shows a plot of the ratio of the shock layer thickness with
injection to that without injection, The graph, which is typical of the cases
investigated, shows that the influence of injection is small on the shock
layer thickness. Thus, figures 6 and 7, which give a plot of ¢/5 vs. s,
summarize the influence of the various injection parameters on penetration.
The slight decrease in the shock layer thickness is a result of the lower gas
velocity. For a given injection drop size and mass flow rate, figure 6 illus-
trates the expected result of greater penetration for the higher values of
injection speed and angle, However, for this case, the relative effect on the
penetration of an increased injection speed is much larger than that of an in-
creased injection angle. 1In figure 7, at a given injection speed and angle,
the penetration is greater for the smaller mass flow rate although the overall
difference is very small. Also, this figure shows that greater penetration is
obtained with a larger drop size for a given mass flow rate. This is in agree-
ment with Volynsky (ref. 15) who found that the deepest penetration was made
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by the largest drops. For the cases investigated, the values of the penetra-
tion at a distance .75 ft downstream of the initial injection station varied
from a minimum of 8.5 percent to a maximum of 17 percent of the shock layer
thickness. These results were obtained for the case where 6265 =1, tan ¢ =1

and EP =75 i with the minimum value occurring for VP = 350 cm/sec and the
maximum for Vp = 700 cm/sec., Thus, at least for this case, the penetration

can be doubled by doubling the injection velocity. 1In general, the results
show that greater penetration can be expected with larger values of injection
speed, angle and drop size. However, for the mass flow rates investigated,
the penetration was found to be almost independent of the mass flow rate.

For a given mass flow rate and injection velocity, a large drop size implies

a small number density. However, Evans (ref. 7) indicates that a high number
density (large surface area per unit volume) as well as a large penetration
may be desirable for alleviation of blackout. 1In this case, a tradeoff effect
must be considered.

Figure 8 compares the inclinations of the gas streamlines for the cases
of injection and no injection. It illustrates how the streamlines are de-
flected as a result of injection; even for the low, spray injection velocity
of 350 cm/sec, the flow direction is changed by a factor of more than three.
Similarly, Billig (ref. 6) showed the large effect of the normal component of
the gas velocity on the calculated penetration of a liquid injected into a
M = 5 airstream over a flat plate.

Figure 9 is a plot of the tangential gas velocity with and without in-
jection at several locations. Since the normal component of the gas velocity
is small compared to the tangential component, this plot is representative of
the effect of the spray on the gas velocity. The injection and no injection
curves all show that the gas accelerates at the downstream shock locations.
For the no injection case, the gas also accelerates at the body and within the
shock layer. This is the expected result in an expanding supersonic flow.
However, for the injection case, the gas is decelerated at the body and every-
where within the shock layer except near the shock itself., Combining these
results with those of figure 8, we see that the spray decelerates the gas as
well as deflects it. Further downstream, the effect of the spray diminishes
and the gas accelerates throughout the shock layer. Such is the case for the
profile shown at the distance 1.2 ft downstream of the initial station. The
injection curves also show the discontinuous normal derivatives which were
postulated at the interface.

The effect of the spray on the gas temperature is shown in figure 10.
Here, the ratio of temperatures with and without injection is plotted vs.
distance, and any deviation from the value unity represents the effect of the
spray. The initial shock layer temperature profile is given in Table 1, 1In
the presence of injection, the results show a large decrease in the gas
temperature along the body. This cooling is very rapid. The temperature de-
creases from an initial value of approximately %500CK to a value of about
7009 in about .L ft distance downstream. It is unlikely that the air is
cooled this much by the evaporation. Instead, it is reasoned that the gas
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along the body is composed mainly of low temperature water vapor evaporated
from the spray.

The exclusion of the correct chemical effects obviously influenced the
results obtained for the gas temperature within the shock layer. Here, the
increased gas temperature can partly be explained by the deacceleration of
the gas, and the assumption of frozen chemistry employed here. The curve at
the distance 1.2 ft downstream represents approximately the highest tempera-
tures obtained for the specified injection conditions. Temperatures obtained
downstream indicate a gradual cooling of the gas.

Figure 11 shows that the smallest drop sizes are obtained along the inter-
face. Within the interface region, the gas temperature is highest at the
interface, and the evaporation rate is fastest there. The drop size at the
interface decreases by 60 percent in a distance of one foot beyond the in-
jection region. This decrease occurs in approximately 7-10’5 seconds. The
figure also shows that very little evaporation occurs at the body; this is
due to the low gas temperatures.

The profiles of the spray density are shown in figure 12. The density is
essentially uniform at the end of the injection region (s = .925 ft). Down-
stream of the injection region the density at the body decreases rapidly.

The spray density along the body, is influenced by the value of
3 2

(——2) which is assumed equal to (——E) in the no-injection region., The in-~
on 0 an O
jection causes the gas to be deflected and this derivative is increased in the
vicinity of the injection region. The value decreases downstream as the gas
flow becomes more nearly parallel to the body. For this reason, the rate of
decrease of the spray density at the body is not as large downstream. At the
interface, the smallest spray density is obtained because the drop size is
smallest at this location. 1In general, the spray density decreases throughout
the interface region as the drops spread into the gas and are accelerated.

In the absence of detailed measurements in the shock layer, the above
theory can be checked in two different ways: The first is to compare the
predicted penetration with experiment. The second is to use the results from
this calculation in a way similar to that employed by Evans (ref. 7) to study
the effects of liquid injection on communications blackout. Water injection
experiments for the geometry under consideration were carried out by Weaver
(ref. 16) using injection velocities which were at least five times higher
than the maximum velocity investigated here. Because of the frozen chemistry
assumption, use of higher injection velocities would result in temperatures
which would be even higher than those indicated in figure 10. Since such
temperatures are not realistic, no attempt was made to carry the calculations
for higher injection velocities. Thus, meaningful comparison with Weaver's
experiments and with data on communications blackout cannot be made at this
stage and should await calculations in which the assumption of frozen chemistry
is relaxed.
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CONCLUSTONS

An analysis is presented for the injection of a liquid spray into a
supersonic air flow. The results show that greater penetration is obtained
for the higher values of injection speed, angle and drop size. 1In general,
the spray acts to slow and deflect the air with a subsequent rise in the air
temperature. The deflection of the air stream enhances the penetration., On
the other hand, the increased air temperature results in more evaporation and
this tends to lower the penetration because of the reduced drop size. The
results of the calculations indicate that the influence of the gas deflection
on penetration is more pronounced.

As a result of the initial slowing of the air stream, the assumption of
frozen chemistry is questionable. This explains the high temperatures calcu-
lated in the shock layer. However, the velocity field is believed to be more
representative of actual conditions because the chemistry does not have as
great an influence.

With the exception of the gas temperature, it is believed that the method

presented here gives reasonably accurate penetration and flow field results.
Use of finite chemical reaction rates will result in more accurate flow fields.

North Carolina State University
Raleigh, N. C., December 30, 1967
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APPENDICES

APPENDIX A
DERIVATION OF EQUATIONS

Introduction

The equations derived in this appendix are those governing the inter-
action of a liquid spray and a gas flow. The gas flow is assumed to be
inviscid except for the drag it exerts on the droplets of the spray.

The liquid is injected transverse to the air flow, a process which is
assumed to result in the production of a very large number of droplets, or
spray. Only a statistical description of the spray is feasible, and the
necessary spray statistics have been presented by Williams (ref. 9).

Spray Statistics

Droplet Size and Shape. The liquid drops are assumed to be spherical so
that the specification of the drop radius is sufficient to completely deter-
mine the size and shape of a drop. However, the liquid drops of a spray
moving relative to a gaseous medium will be spherical only if the spray is
dilute and if the droplet Weber numbers are sufficiently low. 1In a dilute —_—
spray the collisions between drops are infrequent and the ratio of the volume
occupied by the drops to the volume occupied by the gas is small. The Weber
number is given by

A - D
2r p ]V -V |
W =—P8& 8 P (1a)
e O'p

where the subscript p denotes drops and g denotes gas and r, p, V and o are
the radius, density, velocity and surface tension, respectively. The Weber
number indicates the degree of deformation and the amplitude of oscillation
of a liquid drop. 1In order to have dynamically stable spherical drops, it
is necessary that W, < 10, Lane (ref. 17) and Haas (ref. 18). For the gas

conditions employed here, this implies a drop radius less than 125 p (lp =

lO_h cm). The relative velocity between drops and gas tends to decrease
downstream of the point of injection, and the drop radius decreases as a re-
sult of evaporation; therefore, drops initially having Weber numbers satisfy-
ing We < 10 will meet this condition throughout.

Distribution Function. Statistically, the spray is described by a

—
distribution function, f(rp,X,Vp,t). The quantity

-

- o - Y
f X,V ,t) dr dXdv ' 2A
(rp’ »Vp? ) P p ( )
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is the probable number of drops in the radius range drp, about r_located in
the spatial range dX, about X with velocities in the range de, about Vp and

at time t. Employing reasoning analogous to the kinetic theory of gases,
Williams derived the following equation governing the time rate of change
of the distribution function, f:

g%=_§g%;}f_)_vx.ﬁpf)_vv.(§f)+q+r. (34)

Contributions to the rate of change of f due to the terms Q (nucleation and
breakup ) and I' (drop collisions) are assumed negligible in the present
analysis. 1In addition the analysis is restricted to the steady state so that
the relevant spray equation becomes

_B__a(i'f) + v ('\‘;Pf) + v - TFE) =0 (ka)

N
where the force per unit mass acting on a drop at (rp, X, V., t) is denoted
- e
by F = de/dt, and the rate of change of size of a drop at (rp,‘i,'vp, t) is
-
defined as R' = drp/dt. Expressions for R' and F are developed in Appendices

B and C, respectively. The vector operator subscripts x and v denote deriva-
tives with respect to spacial and velocity coordinates, respectively.

Spray Equations

The equations used to describe the spray are the mass and momentum con-
servation equations, an equation relating the change in drop size due to
evaporation and an energy equation which reflects the heat exchange necessary
to maintain the evaporation. These equations are derived as follows.

Equation of Change. As a first step in the derivation of the conserva-
tion equations, the equation of change will be derived. Thus, multiplying

i
equation (LA) by ¢ =9¢ (rp,Vp) and integrating, one finds that

O(R'f) P -
¢ + ¢ - (V_£)dr_dv
V r P V r
P P P P
+[ [ oV -TFf)dr &V =0 (5A)
v r v p P
P P
© 00
where_l [ =) [ and ¢ can be either a scalar or vector function.
Vp rp -00 O

The first integral can be integrated by parts with respect to rp to
give
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J(R'f) — «© © oo 30 . >
o dr dV = OR'f - R'f av_ . 6A
I{II{T— S oty |- S, (64)
P P
00
However, £ —> O when rp —> 0,00 and as a result (¢R'f) l = 0 so that
0]
J(R'E) . ® % 3¢ >
¢ dr dV = - R'f —— dr dV_ . A
L e e e, 8
p P

- -
Since rp, X and Vp are all independent variables, the second integral of

(5A) can be written as

¢V +{(V fldr dV. = V . oV fdr dv 8A
o ] o9, (v f)r A XA (8a)

V P PP -00 O
p P

if ¢ is a scalar function, and if ¢ =" is a vector function as
Jo [ v @ f)ar dv = v - [ [ (e;V )fdr dv (9A)
V r P P P 00 O P P P
P P
- e
where ¢;Vp is a dyadic product.

When ¢ is a scalar, the third integral of (5A) reduces to

- —— oY 6o —— -
f. [ v «(Ff)dr dv_= [ [ v _.(¢Ff)dr dv
-\‘,p r v P P _o o0 v P P
(S SIS CI -
- [ [F-(V_¢)]fdr_dv (10A)
0 v PP
and when ¢ =-$, it becomes
> (e o} (8 0] -~
[« J v (Ft)ardv =/ | v, [(6:F)Elar v
Vp rp L -0 O P
e o N ® o] - - -
- F-v_)¢lfdr dv_ . 11A
TR MDA (11a)

The first integral on the right in (10A) and (11A) can be shown to vanish when
integrated over VP by using the divergence theorem and the fact that £f —> 0
when Vp —> + 00. FEquations (10A) and (11A) then become
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I T ev -(eyar dv =-J [ [F.(v_¢)]edr dv (124)
'v r v P P -0 0 v P P
p'p
and
L ] v, @Feyrd =-f [ [(Fv Yo]fdr dv_ . (134)
> 20 T v PP
pp

Combining the results (7A), (84A), (9A), (12A) and (13A), the equation of
change for the general spray property ¢, is given by

o 00 ) . oo 00 _, _
- R'f dr dV_ + . ¢y fdr dv
{Oo({ 5rppp VX{OO({ P P P
® oo N
- [F-(vvcb)]fdrpdvp = 0 (144)
-o00 O

when ¢ is a scalar, and by

-

00 (e8] ~ (s 0] oo

¢ - P N —~—
- R'f <— dr dV_ + V_- o;V_)fdr_dv
{00 g ot pp X {OO (f) (857, )Ede AV,
(0 0) [0 0] - -

-1 ] [F-v jelear &V =0 (154)
“o0 0 P P

—
when ¢ = ¢,

In order to simplify the evaluation of the integrals appearing in (14A)
and (15A), it is assumed that

- -~ iy
£(r_,X,v_) = g(r_,X) &, (V -V 16A
(%)) = &(x ;%) o, (V,7,) (16a)
which serves to define the size distribution function g and where SD is the
three-dimensional Dirac-delta function with the property that f_ BD(65:3 )dv;
v

P
= 1, provided that v; =-%p is in the range of integration and zero otherwise.

Here,“\‘/p is meant to represent the locally average value of the drop veloci-

ties.
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Continuity. Here, ¢ = Mnrp mp/B is the mass of a drop, where mp is the
material density of the drop. Thus, ¢¢/0r_ = Lnr °m_ and V,% = 0. Using
(16A) in (1LA) it can be shown that p P

00 s _
[ bar “m_R'g dr (174)
o PP P

?—/ fooiﬂer g dr
Vx Pg > PP P

where R' denotes R' evaluated at Vp =“\7p. However, the mass of condensed

phase per unit spatial volume is given by

Py = ({ 3w, mo 8 drp (184)

and pp will be called the spray density. It follows from equations (17A) and

(18A) that the continuity equation for the spray can be written as

vV )=/ lmrpgmp R' g drp . (194)
0

b

Momentum. Here, ¢ = % r Bm—\‘/' is the momentum of a drop. Thus,

- B o = . i 3 = . . .
8¢/Brp = hnrp mpr and (F vv)"$ =3 mpF. Using (16A) the integrations

over Vp in (15A) can be carried out, giving

Q

- - = 0o
Ry o) - - I 3
-V ber "m_ R' gdr_+ «(V_;V = nr_“m_gdr
p ]y mp Riedn vxrp’p)é 5 ™ "p & Tp
foo x nr 5m‘g‘gdr =0 (20A)
o 2 PP P

— — ~n o
where F represents F evaluated at V. = V_. Using equations (17A) and (18A),
equation (20A) reduces to P P

- - — - QO -
-V_V._. \' + V. _[(V_;V - = 7r Fgdr =0. 21A
oV (e V) + T LV 5V Je, ] [ 3 m nFedry (21a)
The second term above can be expanded to give
S A = = 1 =2 - =
Vx-[op(?/p;vp)] =0 L{V XV )XV + 5 VV T+ V[V - (e V)] . (228)

Substituting (22A) into (21A) and canceling, the following conservation of
momentum equation for the spray is obtained:
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s .= 1 _=a2 R T P
pp[(vxxvp)xvp+§vvp]=(f) 3 m Fgdr . (234)

—
Due to the assumed f dependence on Vp’ the pressure contributed by the thermal

motion of the drops is necessarily zero; hence, it does not appear in (23A).

Energy. The energy equation for the spray is taken as the statement
expressing equilibrium between the heat transferred to the drop from the air
and the heat consumed by the drop while evaporating. The drop temperature is
assumed uniform. Thus, if Q represents the rate of heat transfer to the drop
from the surroundings, m the steady evaporation rate and L the droplet latent
heat of vaporization, the droplet or spray energy equation can be expressed as

Q = mL . (24A)
This equation allows the determination of the droplet saturation vapor pres-
sure (or temperature) from the properties of the surrounding gas and the drop

size. Expressions for m and Q are given in Appendix B.

Drop Radius. 1In addition to the usual conservation equations, it is
necessary to describe the rate of change of the drop radius. Introducing the
quasi-steady state assumption for the evaporation process (see Appendix B),
one can write

D A4 3 2 v _ 2 5
3 (5 nr mp) = -hnrp mp) = hnrp m (VP §7rp) (254)

where D/ Dt = O/dt + ﬁp- v is the total derivative. Hence

V- (vr) = -rh/unrpzmp . (264)

Gas Equations

The conservation equations used for the gas are the ordinary equations of
fluid dynamics, with suitably added source terms accounting for the average
effect of the spray (ref. 9).

Continuity. The mass per unit volume per second added to the gas from
the evaporating spray is

[0 0] 00 > -
[ J lLmr “R'fdr_ dv (274)
_0o O PP P P

or, integrating with respect to V_ and using (16A), the above expression re-
duces to P
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00

o _
R' gd . 28A
(f) lmmprp gdr (284A)

The gas continuity equation is then given by

o0
= 2 -
. 4 = Iy r R'ed 20A
V (pf g) é mnp p g rp (9 )

where Pes called the fluid density, is the mass of gas (air plus liquid vapor)

per unit volume of physical space. The amount of liquid vapor relative to the
amount of air in a given volume is assumed to be small enough so that the
properties for the gas are essentially those of air (Appendix D). Also, the
usual density of the gas pg (i.e., the mass of gas per unit volume of space

available to the gas) differs from oF because of the volume occupied by the

spray. The previous assumption of a dilute spray will be violated whenever
p; differs greatly from Pgs therefore, the ratio pf/pg’ given by

(0 0] 00
—=1-/ %ﬁrp5fdrp5d‘\‘/p:1-

BL&O

(304)

ke

o9
|
8
o

o

should be kept small. Henceforth, we will take Pe = Pyr Consequently, the —
gas continuity equation becomes &

2 Dt
VelpV)=-J lmmprp R gdrp . (31A)

Momentum. Accounting for the drag exerted on the gas by the spray, the
time rate of momentum addition to the gas by the spray, and neglecting the
viscous terms in the pressure tensor, the equation of conservation of momentum
for the gas can be written as

00 -

> o 1 2 L -
XV )XV _+=vV + = - = m r ° Fgdr
Pl (VEV )XV, + 5V V] + vp, (f) 5 m r~ Fgdr
-~ - oo o
+ (V. -~V Yhan_ r ~ R' gdr_ . 2A
(Vg P){, oTp R8T, (324)

The first integral represents the force per unit volume exerted on the gas by
the spray while the second integral accounts for the momentum carried to the
gas by the vapor evaporating from the spray. The hydrostatic pressure of the
gas is given by pg.

Energy. Following Williams (ref. 9), the gas energy equation may be
taken as

31

138



TR S S -1
v [ngg(hg + )] (f) = Jrrp mp (F Vp)gdr
0 o Vi
- é unrp mpR' (hp + 7?0 gdrP . (33A)

In deriving this equation the heat flux vector in the gas has been taken as
zero and all viscous terms have been excluded. Here, hg is the specific

enthalpy of the gas and hp is the enthalpy flowing to the gas per unit mass

of vapor. The first integral gives the work done on the gas by the spray
while the second integral denotes the energy added to the gas by the evaporat-
ing spray.

State. Neglecting the partial pressure of the vapor and assuming the
air to be a mixture of ideal gases, the equation of state for the gas is given
by

R

o
i T (34A)

p = g

g Pg

o9

where Rb is the universal gas constant, Tg the gas temperature and Mg is the
mixture molecular weight, defined for an N component mixture by

N
Mg = iil XM, X, = mole fraction . (35A)

The equations given by (19A), (23A), (26A), (31A), (32A) and (33A)
constitute a set of coupled integrodifferential equations. Solution of this
set along with the supplemental equations (2L4A) and (34A) is very complicated
and very laborious. To alleviate this untenuable position, certain simplify-
ing assumptions must be made in the equations. As a first step in this direc-
tion, the following section will introduce assumptions allowing one to evaluate
the integrals appearing in these equations; thus, the set of integrodifferen-
tial equations are replaced by a corresponding set of approximating differen-
tial equations.

Explicit Expressions for the Source Term Integrals

The distribution function has already been assumed to have the form

£ =o(r X))o (TV) (164)
g\ p) Vi D\ p p/ \ y

with.vp representing the average (local) velocity of the spray droplets and
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where g(rp;i) is the size distribution function. It is now assumed that the
spray also may be represented by an average drop size, r_ = r_; therefore, we
take P
- -
r ,X) =n(X) 3, (r -t 6A
g(r,,X) = a(X) 8 (r - ) (368)

-
where n(X) is the number density of drops in the spray and SD again represents
the Dirac-delta function, The integrals over rp appearing in the spray and
gas equations can now be evaluated giving the following results:
o 3R'p

[ l4om r 2 R' gdr
o PP Pz
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\Y o _
(h + 2;) f h%mprp R! gdrp = P (h +

- bt -
Here, R' and F now represent values evaluated at the average value r_as well

-
as at v .,
P

Dimensionless Governing Equations

The spray and gas equations are normalized using the.definitions given
in Appendix E. Use is made of the expressions for Q and m and R' from
Appendix B and for F from Appendix C. 1In addition, the superscript bars
denoting average values are dropped and the dimensionless variables are ex-
pressed in the heretofore dimensional notation. The following dimensionless
governing equations for the spray and the gas result:

Spray Continuity.

2
B1PPc  PX
. kY, = ___ELEL. P A
v(p,V,) = -3 2 - (384)

p
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where

Spray Momentum.

C
XV )XV + = Y = —_ V -B.V vV - \
o P
Spray Energy.
r
[gfi + ___E_]
Kng ocrp rp+A
Po = T (TgBrT,) =a T
[t + —2]
O&r rp+AT
Drop Radius.
2
Vpr (V) = - =g &
2 P
Gas Continuity.
P
. V = —_ X .
P
Gas Momentum,
VXV )XV + = Vo + — = - —— (V -8B,V
( g XVg T3 VY, og VPg = ~3P3BPg N rg PoVp)

3L

p C

(394)

(4oA)

(41A)

(h2A)

(L34)
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Gas Energy.

v 2

- 8] p,C - - -
VLo (h, +£)] = 238,85, r—z (B> M -pV | (V-0 )V

2
X Vp
- PiPoPg 7 (b + = )1 . (bka)
p

p, =2.p,T . (45A)

The dimensionless parameters (denoted by the B's) appearing in the above
equations are defined as

5 - b 1 . noing oo _ Pp-inj
1~ V D, Re 2 T2 7§ ’ B ’
oo 8o N 0 oo > Pew
P
g D T
1 o0 N -ref
s — 2 Pso g i i (46A)
7 00 Moo P p-inj 800
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APPENDIX B
EVAPORATION

Introduction

The evaporation of a spray injected into the high-speed, high-temperature
environment of a reentry vehicle is a very complicated process, Calculations
for the size and temperature histories of the spray droplets cannot be per-
formed unless many assumptions are introduced in the actual physical model.
The following sections will present the assumptions employed and the resulting
expressions used for calculating the evaporation rate of the spray.

Theory

Physical Enviromment. As a starting point in the spray evaporation
analysis, we use the previously given assumption (Appendix A) that the injec-
tion process results in a large number of dynamically stable, spherical drop-
lets. From Williams (ref. 9), the time rate of change of diameter of a drop
depends on the physicochemical evaporation process and on the nature of the
surrounding enviromment. For sufficiently slow changes in the drop size and
in the enviromment, the time dependent terms in the governing equations may be
dropped and the quasi-steady-state evaporation rates may be employed. Thus,
the time dependence of the evaporation only enters through changes in the
ambient conditions and drop diameter; that is, the steady-state solution ob-
tained for a fixed drop size applies to the evaporating drop when it reaches
the diameter used in the steady-state solution. This assumption greatly
simplifies the mathematical treatment.

Consistent with the statistical assumptions introduced in Appendix A, it
is assumed that the spray evaporation can be determined from the known evap-
orative properties of representative droplets. Hence, we seek to describe
the evaporation of a single drop in the shock layer. The Re number for the
largest drops considered in this work is small so that the appropriate rare-
faction parameter for the droplets is the Mach number to Reynolds number ratio,
M/Re = uoo/aoopood’ where d, p_, a  and p_ are the droplet diameter,

viscosity, speed of sound and density of the gas at large distances from the
drop, respectively. The injection considered in this work is into the expand-
ing, supersonic portion of the shock layer, and the evaporating drops should
experience a minimum value of the ratio M/Re when at their maximum diameter
corresponding to the injection values. The maximum diameter at which drops
can be injected into the given environment has already been shown (Appendix A)
to be approximately 250 n. Consequently, an approximate lower limit for the
ratio M/Re occurs for the drops when they are first injected and is of the
order M/Re ~ 1. Since the range, .01 < M/Re < oo, includes both the transition
and free-molecule regimes, Schaaf and Chambre (ref. 19), allowances for rare-
faction effects must be made in the droplet evaporation analysis. Deviations
from continuum evaporation theory in the absence of convection effects will
occur whenever the drop radius is comparable with the mean free path of a
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vapor molecule; thus, continuum results are not applicable to either small
droplets at moderate pressures or to larger droplets at lower pressures,
(ref. 20).

If no convection currents are present, continuum droplet evaporation
theory hinges on the diffusion of vapor molecules away from the drop and the
influx of heat into the drop, (ref. 20). Most theoretical treatments con-
sider evaporation as a problem with quasi-steady gradients of composition and
temperature, and then make assumptions regarding the variation of the relevant
properties (e.g., diffusion coefficient, thermal conductivity) over the gra-
dients (ref. 21). 1In the presence of large temperature and concentration
gradients, the mass diffusion and heat transfers have an appreciable effect
on each other and cannot be decoupled as is done in many treatments. Indeed,
this case, as pointed out by Fuchs (ref. 22), requires a special detailed
analysis which so far has not been carried out.

Diffusional control of evaporation will diminish as the drop decreases
in size; in the limit of very small drops, the evaporation is kinetically con-
trolled and proceeds as if in a vacuum. Following Kennard (ref. 23), a drop
surrounded by its saturated vapor will undergo equal rates of evaporation and
condensation. The evaporation rate for this case can easily be calculated
since it is exactly equal to the condensation rate which can be determined
from the known number of molecules per unit area per unit time striking the
droplet surface. To explain the net or observed evaporation (or condensation)
which occurs when there is an imbalance in these rates, an unknown factor «
is introduced which represents the fraction of impinging vapor molecules that
do condense.

For evaporating drops moving relative to the surrounding medium, con-
sideration must be given to the forced convective effects which are present.
Mathematical difficulties have not as yet allowed the complete solution for
all Reynolds numbers for the rates of evaporation or heat transfer from a
spherical body ventilated by a gas stream. The approximations which have
appeared are limited to particular Reynolds number ranges, (ref. 22). How-
ever, as pointed out by Fuchs, for drops moving relative to a high-speed,
rarefied gaseous medium, the width of the diffusion boundary layer is less
than the mean free path of the vapor molecules and practically all the evap-
orating molecules will be carried away by the gas; i.e., evaporation will
proceed as if in a vacuum. In this work, as a first approximation, the effects
of convection will be ignored, an approximation which should be of increasing
validity because the evaporation rate so derived tends toward the correct
vacuum rate. If, as expected, the rates of mass and heat transfer are in-
creased by the effects of convection currents, (ref. 24), neglecting convective
effects should yield results representing a lower limit for the actual process.

Evaporation with l/rp << 1. Consider the steady evaporation of a motion-

less, spherical drop into a gaseous medium with uniform temperature and pres-
sure but with nonuniform vapor concentration. If the drop radius, rp, is

considerably larger than the mean free path, f, of a vapor molecule and the
equilibrium vapor pressure of the material is considerably less than the total
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pressure of the medium, the evaporation rate (mass/time) is given by Maxwell's
formula, (ref. 22)

m = hnrpD(co - Coo) (1B)

where D, co and ¢, are the diffusion coefficient of the vapor, vapor concen-

tration (mass/volume) in equilibrium with the droplet and vapor concentration
at large distance from the drop, respectively. When , < Cor We have con-

densation and when c, > Co Ve have evaporation. When Co = Coo? equilibrium

exists with no net evaporation or condensation occurring. One exception to
this condition occurs for small drops in a medium saturated with vapor., 1In
this case evaporation does take place due to the increased vapor pressure of
the drops owing to their curved surfaces. For a drop of radius rp and

temperature T, the vapor pressure will be increased over the ordinary value
for a flat liquid surface at the same temperature in accordance with the
Kelvin equation, ref. (22) and (25)

P P -P
o 2a o "o _ 20
In P Tr_RTm or P " r_RTm (2B)
00 PP

where P, is the vapor pressure of the drop at temperature T, P the vapor

pressure over a flat liquid surface at the same temperature, ¢ the surface
tension, mp the liquid density and R the gas constant of the vapor. Because

of this elevation in vapor pressure, any water droplet, unless extremely
large, will evaporate in air of 100 percent humidity, (ref. 20). However,
except for extremely small droplets, the effect is small.

Corrections to Maxwell's formula must be made if the concentration of the
evaporating vapor is not small compared to the concentration of the surround-
ing medium, (ref. 21). Fuchs (ref. 22) has shown that the evaporation rate
when allowing for this so-called "Stefan flow'" should be expressed as

+
i Py * Py

=. 1 + ——————— B
m=, ( 2P ) (38)
where ﬁo is the evaporation rate according to Maxwell, P the total pressure
of the medium, P, and P, are the partial vapor pressures in equilibrium with

the droplet surface and at large distance from the drop, respectively. Gen-
erally, this correction is small within the range of conditions for which
Maxwell's equation holds.

p SR ke 2 g P, g 2 e m s / . o ~ e ~ v T o~ o
Evaporation with Arbitrary £/t . When the drop radius is of the same

order as the mean free path of the vapor, the simple diffusion theory given in
the preceding section breaks down. Analogous to the familiar viscous slip and
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temperature jump arising at the interface between two phases, Langmuir (ref.
26) pointed out the existence of a rapid change in vapor concentration at the
surface of an evaporating drop. Maxwell's equation assumes that the macros-
copic diffusion equation may be applied right up to the surface of the drop
which is surrounded by saturated vapor, an assumption which does not hold if
1 =~ rp. Fuchs (ref. 27) derived an equation correcting Maxwell's formula for

the abrupt change of concentration of a drop of any radius. The corrections
were obtained by assuming that the rate of removal of vapor by diffusion as
given by Maxwell's formula can be applied only at distances A, of the order
of f, from the surface of the drop, while in the region between the drop
surface and A, the transfer of vapor molecules occurs as in a vacuum. In
this latter region, the net rate of evaporation is given by

m = hﬁrpgva(co-cl) (LB)

where ¢y is the vapor concentration at a distance A from the drop, v is one-

fourth of the mean speed of a vapor molecule and @@ is the evaporation coeffi-
cient, assumed equal to the previously defined condensation coefficient.
Equating this rate to Maxwell's rate at a distance A from the drop

m =L (rpf&)(cl-coo) (5B)

and eliminating the concentration €15 there results

m
(¢}

n o= (6B)

D r
[G=5) + (5z)]

which tends to Maxwell's formula (1B) if rp is large and to the vacuum rate,
Mﬂrpgvaco, if r is small. Explicit expressions for A are discussed by
Wright, (ref. 28).

Evaporation with Heat Transfer. Under conditions of steady evaporation,

the quantity of heat transferred to the drop must equal the amount needed to
supply the latent heat of vaporization consumed in the evaporation, i.e.

Q =1Im (7B)

where Q is the heat rate to the drop and L the latent heat of vaporization of
the liquid. As a consequence of this heat transfer, the temperature of the
drop must be less than the gas surrounding it; this process is usually re-
ferred to as the self-cooling of the evaporating drop. Neglecting heat
transfer by radiation and convection and assuming the thermal conductivity

of the medium to be constant, the heat transferred to the drop is given by

Q = lmrp}\(Too - T,) (8B)
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where A is the thermal conductivity, Too the temperature of the gaseous medium

at large distance from the drop and T, the droplet temperature. Using equa-

0
tions (1B), (7B) and (8B), Fuchs (ref. 22) obtained the expression

T, - T =5 T - 7) (9B)

where P, = f(TO) is a function of the drop temperature alone, which enables
one to calculate TO (or po) for given conditions P ? Too' Mason (ref. 29)
applied the approximate form of the Clapeyron-Clausius equation (valid pro-
vided T00 - TO is small) to account for the effect on the vapor pressure of

the self-cooling of the drop, and obtained an expression giving the evapora-
tion rate in terms of the radius of the drop and the liquid vapor pressure
evaluated at the temperature of the surrounding medium. Equation (8B) is not
applicable whenever [ = rp and must be corrected for the temperature change

at the droplet surface, analogous to the concentration change. Wright (ref.
2l), in a paper intended to account for the effect of heat transfer on the
evaporation rate of arbitrarily small droplets, followed the evaporation model
of Fuchs (ref. 27) and introduced a thermal analogue, AT’ to the A of Fuchs.

He considered evaporation into a large excess of gas; thus, practically all of
the transport of heat to the drop was due to the molecules of the surrounding
gas. An explicit expression for Aﬁ was given., Considering the condensation

of a supersaturated vapor on a drop in both rarefied and continuum environ-
ments, Kang (ref. 30) employed a somewhat similar energy balance model as
Wright, but allowed for the transport of heat to the drop by the impinging
vapor molecules,

Spray Evaporation Expressions

Expressions for the spray evaporation into the enviromment presented by
the shock layer will be developed in this section., The basic plan of attack
will be to follow as closely as possible the previously mentioned derivations
for the mass and heat transfer for drops of arbitrary radius while relaxing
the assumption of uniform temperatures or small gradients whenever possible.

Following the reasoning of Fuchs (ref. 27) for droplets of arbitrary
radius, the net evaporation rate in the region rp <r< rp + A can be ex-

pressed as
RT A [ RT
= b 2afec -\/—79 -c, 7:é ] (10B)
P o V¥V 2x JANREEN-

where ¢ is the concentration and T is the temperature of the vapor, with the
subscripts O and A referring to the drop surface and distance A (the A of
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of Fuchs) from the drop, respectively. Here, R is the gas constant of the
vapor and the other symbols have their usual meanings. We wish to equate the
above rate to the rate of removal of vapor by diffusion at the distance A,
According to Wright (ref. 21), the concentration gradient must be expressed
in terms of the mole fraction if the temperature is not uniform; therefore,
from Penner (ref. 31), we have for a spherically symmetric system

m = —hnrch d In
dr

M

where M, M and X are the vapor molecular weight, mixture molecular weight and
vapor mole fraction, respectively. The radial coordinate is denoted by r.
Since c/c = MX/M, where ¢ is the mixture concentration, we have

2 d

cD — (MX/M) . (12B)

m = -bgr I

Assuming cD constant and integrating gives

X(r) - X(w ) = () : ﬁ‘_D : (138)
nre

Applying the above expression at r + A gives

lav]

. MmEA
m = hn(rp +A)D [CA - (:—f?——) ca)] (14B)
A Soo

where the subscript A denotes values evaluated at rp + A. Equating equations

(10B), (14B) and eliminating c, gives
_1/T M _c
A ® A
Ll—‘.l’(r D[CO_( 'T—' —_——_—-) CCD]
) P o M, <
m = (15B)
D r T
A D
[ + (=) =1

)
+

rpvoOé rp AN TO
where v, s one-fourth the mean speed of a vapor molecule at the drop tempera-
ture. Using the explicit expression for A suggested by Wright (ref. 28), we
have
D/\
2v

o)

A =

—~
[
CN
o3

~—

so that
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hnrpD e - ( TS _— ) Coo]
m = L . (17B)
T T
2 A A p
G V& &)
p 0 P

In order to use the above expression, values for T, are required. Information

0

concerning T, can be obtained by making an energy balance on the droplet

0
surface.

The energy balance developed below follows closely that given by Wright
(ref. 28). Assuming the concentration of the surrounding gas to be much
greater than the evaporating vapor, the heat transferred to the drop will be
mainly due to the gas. Molecules emerging from the gas at a distance AT from
the drop are assumed to have a mean energy given by

Ay g (188)

= Ty

where k is the Boltzman constant, j is the number of degrees of freedom and
T, 1is the temperature at r + AT. The mean energy transferred by a molecule

e ; —

incident on a liquid drop of temperature T, can be expressed in terms of the

0
thermal accommodation coefficient o& for translational energy; there results
i+

To obtain the total energy transferred, the above energy per molecule is
multiplied by the rate at which molecules strike the surface so that the rate
of supply of heat can be written as

. Pap .
Q = l*nrpg%vAT (Kr-) (J—;) (TAT - Ty) - (20B)

Since the heat transfer rate by conduction at rp + AT is given by

Q= ba(r )+ AL) X (T - TAT) (21B)

and since the rates expressed by (20B) and (21B) are equal, one can solve
for

ho
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}\(rp +AI)(TOO-TO )

TAT—TO = pAT (22B)
2 +1
W Y, Ty (5270 Mrp + 4
Under conditions of steady evaporation
Q = mL (238)
which can be combined with (20B) and (22B) resulting in
bur A (T - T.)
T p 00 0
mL = EXTAT § (2MB)
(L =1yt G )
r +1 +
aTVAT SR A
From Wright (ref. 21), we take
X?AT
A <1+_1) . (258)
By 2
Thus,
by MT_ -T.)
nL = pAT © ro . (268B)

2 T, _»_
SR

Equations (17B) and (26B) can be used to express the concentration at the
drop surface as

2 A A P
- = | —
MT - T.) o +x (r ﬁﬁ”
00 0 p 0O p (27B)
c_ = T
° T. % _¢ [2AT+( 21
M o, T ‘r_+
pf1-Y 2 @8y wy T p ™1
= c
MA ¢o o
p M
Taking ¢ = R Tp , we have
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2 A «\/ LN
ORGT, T - T.) 5= V1 ()]
p © 0 P o P . (288)
° MO Tn Moln | Coo. [& “r + ( “p )]
[1 = ( T ~ )c——] O(T rp r +AI|

Since p_ = f(T.) the above expression can be used to solve for the droplet
o 0

temperature provided all terms on the right hand side are known. Values of
the properties at rp + A and rp + AT are unknown. For simplicity, the values

at rp + A are taken as those corresponding to the droplet surface, and the
values at rp +-AT those of the gas at large distance from the drop. 1In addi-
tion, we take o = 0 since the spray is considered dilute and the heat bal-

ance was made for evaporation into a large excess of gas. Using these assump-
tions, the final expressions for the evaporation rate and the saturation pres-
sure at the droplet temperature become

) Ygr Dp M
o= p P = (29B)

2 A P

R la "7 !
p p
and
Y
2 A P
ARy T, (TOO-TO) 57 * = +A]
P

20,
O& r r fAT

Combining equations (29B) and (30B) and normalizing the result according
to the definitions given in Appendix E, the following dimensionless expression

dr by
for R' = dtp = - 5 is obtained:
hm T
PP
R' = - = (31B)
P
where
pD T -1
Yo 2 A P
=5 IG =)l - (328)
0 P p
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The dimensionless form of (30B) is

2 A, r]
)\TO [arp rp+A
p. === (T BT)
o) LD 00 fi fE
r

G

In this work, it is assumed that Qp = 1 and @

value @ = ,03L given by Fuchs (ref. 22) for pure water.

(33B)

.05 which approximates the
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APPENDIX C
SPRAY DRAG

Forces Acting on the Spray

N The equations derived in Appendix A are expressed in terms of a quantity
F representing the force per unit mass exerted on a drop by the surrounding
gas. Contributions to F may include (ref. 9): (a) skin friction and separa-
tion drag, (b) body forces such as gravity, (c) droplet rotation, (d) pressure
gradients in the gas. However, effect (a) is usually largest for sprays and
will be the only effect considered in this work.

In terms of a drag coefficient CD’ the expression for F for a spherical

drop of radius rp may be expressed as

5ngD (A - e
F = Vv -V vV - 1C
Smprp g P) rg VPl ( )

thus, (1C) becomes, in dimensionless form

%0 ,C
- _ g D > o - -
F = B (vg-agvp) lvg_ﬁgvp . (2c)

Droplet Drag Coefficient

Sphere drag coefficients as a function of Reynolds number are usually
taken from the so-called "standard drag curve," which is applicable to the
uniform motion of a single solid sphere in an infinitely extended, still,
isothermal, incompressible fluid. However, the enviromment of the spray is
quite different from the conditions upon which the standard drag curve is
based. The spray is being accelerated by a medium which is itself accelerat-
ing, giving rise to unsteady drag. Increased turbulence intensity due to the
disturbing effect of the droplets, droplet rotation and changes in the varia-
tion of the gas viscosity near the drops because of the heat and mass transfers
can also affect the drag. Rarefaction effects must also be considered.

As shown in Appendix B, the drops are expected to be in either the transi-
tion or free-molecule regime. Figure 13 represents a plot of sphere drag
coefficient data for both transition and continuum supersonic flows, (refs.
32-36). The solid line is the curve fit

CD = g(Re/M)"0867 , 1< %? < 10lL . (3C)

This coarse approximation is more than satisfactory in view of the fact that
the conditions under which the data were obtained were not typical of the
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actual enviromment of the spray drops. In the free molecule regime, the drag

coefficient is taken as that for diffuse reflection (ref. 19)

2

-s°/2 4 2
c, = E___g_ (1 + 282) L ts - 1 erf(S) + ?Suﬂ
S 28 w
L T & O
|V -v_| |V _-v_|
where § = —8 P and Sw - _8 P
’2R0Tg '1/2R0TP
M M
g g

(kC)

(5¢)

are the speed ratios for the undisturbed gas and for reflected air molecules
at the drop temperature, respectively, Here erf(s) is the error function.
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APPENDIX D
THERMODYNAMIC AND TRANSPORT PROPERTIES

Introduction

The gaseous medium acting upon the spray is a mixture of ionized air and
water vapor. However, the water vapor content of the mixture relative to the
air is assumed small enough so that its effect may be neglected when calculat-
ing the thermodynamic and transport properties of the gas. 1In addition, the
ionic species of the air are neglected when making these calculations, Hence,
the thermodynamic and transport property values are desired for a high tempera-

ture dissociated air mixture consisting of the five species Ng, 02, NO’ N and
0.

Thermodynamic Properties

Gas Specific Heat and Enthalpy. Using the usual mixture rules, the frozen
specific heat at constant pressure is

N
c =% XC ., i=12,...,N (1D)
pg ;-7 1l pst

and for the mixture molar enthalpy

N
hg = '21 Xihgi’ i=1,2,...,N (2D)
1=

where X, are the species mole fractions and N is the total number of species.
i

Values for the specific heats and enthalpies of the various species were ob-
tained from a least-squares curve fit of the data given by Wilkins (ref. 37).
The curve fit was made over the range (200°K < Tg < 6000°K). At temperatures

above 6000°K the specific heats were taken as constant at their value at
6000°K, and the enthalpies were calculated from the resulting linear expres-
sions. Values for the heats of formation were taken from Wilkins.

Droplet Enthalpy. For the droplet enthalpy, we have

T
p

ho= [ 4T +h . (3D)
TO o

0
pf the droplet heat of formation at the temperature T
o

where Cs is the liquid specific heat, Tp the droplet temperature, T, a reference

temperature and h 0"
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Assuming C, to be constant and taking T, = 0°K, there results

S 0

hp = CSTp + hpfo . (4D)

Droplet Latent Heat of Vaporization. The temperature dependence of the
latent heat of vaporization of the liquid drops, L, was obtained by a linear
curve fit of the data given by Smithsonian Meterological Tables (ref. 25).

Transport Properties

Assumptions. Calculations for the transport properties are very compli-
cated for mixtures with as many as five components. According to Yun and
Mason (ref. 38) transport properties of dissociated air calculated using the
"atom-molecule" binary approximation are unlikely to be in error by as much
as 5 percent when using the correct species concentration. Since more accu-
rate tramnsport calculations are not required in this work, this so-called

binary model for the air mixture will be used. In this approximation, N2, O2

and NO are lumped together as molecules, and O and N as atoms. The necessary
collision integrals are obtained by considering only three interactions, atom-
atom, atom-molecule and molecule-molecule, which are taken to be the same as
the corresponding nitrogen interactions.

Transport properties desired are the viscosity, thermal conductivity and
the diffusion coefficient. Expressions for the mixture viscosity and thermal
conductivity are taken from Brokaw (ref. 39). They represent approximations
to the more complex expressions based on rigorous kinetic theory. The diffu-
sion coefficient is calculated using Le = 1.

Viscosity. For a gas mixture of N components, the viscosity is approxi-
mated by

% (50)

where |, are the viscosities of the component gases and Xi is the mole frac-
i

tion for species i. For the coefficients ¢ij’ we have

by /2 M, 1/k 2
[1+ (E") (ﬁl) ]
= J L (6D)
*i3 M, 1/2 LOD)
2 V2 (1 +&)

]
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where Mi is the molecular weight of species i. The viscosities of the pure

component gases are given by

-6 W MiTg

b, = 26-69%. 10 (7D)
i <§i2,25>

where My has units of (g/cm sec) and the <Z@£2’2)2> represent collision inte-
grals such as those tabulated by Yun and Mason.

Thermal Conductivity. The themmal conductivity of a mixture of poly-
atomic gases may be written as

A oLoo= A+, (8D)
mix mix mix

where Kéix is the monatomic thermal conductivity of the mixture and K&ix is
the mixture contribution to the thermal conductivity by diffusional transport
of internal energy.

The monatomic mixture conductivity can be approximated by

}\I
i

N X, (9D)

J
1+ Z v,. <+
j=1 ij X,

1
!

mix

]
™M=

i=1

where the ki are the monatomic thermal conductivities of the pure component

gases, given by

15R
Al 0

i = 'J_W Hi . (].OD)

For the wij’ we have

(M, -M,) (M, -.142M, )
i 37 5 Al (11D)

V.. =o,. [1+2UL
H 1] (M, + M.)
i j




and the ¢ij are as previously given by (6D). The expression used for )Qix is
)\'H

}\ll — i
mix

5 X (12p)
j

1+ £ ¢, =

i=1 ij X

hfa!

where the X; are the internal thermal conductivities of the pure component

™M=

1

i

gases, given approximately by

2C

n pgi '
A = .88 ( 5%, -1) A (13D)

I

Diffusion Coefficient. The Lewis number is defined as

Le = X /p DC .
&/PPCpg

Taking Le = 1, the diffusion coefficient can be calculated using the previously

given results for C and A _ .
P& g
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Symbols

]

a O 0O
o

H & " H O &5omooe Qo FoHoAaA Y o0
(2 = -

=
(1]

APPENDIX E
SYMBOLS

drag coefficient

specific heat at constant pressure
liquid specific heat

vapor density

diffusion coefficient

vehicle nose diameter

droplet diameter

drag force per unit mass

flux distribution function or spray distribution function
flux term

size distribution function

total enthalpy of gas

heat of formation of liquid

flux term

source term

Boltzman constant

heat of vaporization

Lewis number

mean free path

molecular weight or Mach number
material density of liquid
evaporation rate or injected liquid mass flow rate
atomic nitrogen

diatomic nitrogen

nitrogen oxide

coordinate normal to body
atomic oxygen

diatomic oxygen

pressure

saturation vapor pressure
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03]

F§> > R TD,$Q Q N

(oo
)

@

spray nucleation and breakup

heat transfer rate

integral of flux distribution

body radius of curvature

Reynolds number

time rate of change of droplet radius

radius of axisymmetric body or radial coordinate

droplet radius

speed ratio

coordinate along body

temperature

time

component of gas velocity

velocity

component of sprayAvelocity

Weber number

n/e

mole fraction

cartesian coordinates

compressibility factor, M_ /M
8o’ 8

n/5

evaporation coefficient

thermal accommodation coefficient
dimensionless parameter

drop collisions

ratio of specific heats
concentration jump distance or injection length
temperature jump distance

shock layer thickness

Dirac delta function

penetration distance

local body angle

gas thermal conductivity
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ug gas viscosity

v shock angle

E dependent variable of integral method differential equations
o) density

Gb droplet surface tension

¢ injection angle

X evaporation factor

Q collision integral

Subscripts

g gas

I injection

inj spray injection value

N ) no injection

n velocity component normal to body
p spray

s velocity component along body
S} shock

€ interface

o body

00 free stream

Superscripts

— dimensional quantity or average value

denotes derivative

Normalizing Factors

Except for the quantities listed below, all gas properties were normalized
using their corresponding free stream values and all spray properties were
normalized using their corresponding initial injection values, The coordi-
nates and geometrical quantities were normalized using the body nose diameter,

DN.
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The following normalizing factors were used:

Variable Normalizing Factor
cp 5R0/2
D M
goo/pgoo
F o V2 /mr .
8o 8o’ P P-1n]
L 15 R T LM
5 Ogoo/ -
R.T M
Po P N0 800/ ™
R! mr ., .
p‘800/ P p-1inj
- o
Tp Tp-ref = 233K
A r ..
p-1inj
AT r oL .
p-inj
A 15 R M
g > O“goo/ 8o
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